Project for improved root canal therapy launched

By DTI

ROSTOCK, Germany: In Germany, about 7.5 million root canal therapies are carried out annually. With the help of an innovative system, it may soon be possible to carry out ultrasonic preparation of the root canal and to monitor the condition of the file during treatment. In addition, protection against thermomechanical overloading will prevent the instrument from breaking.

Research teams from Rostock, Dresden, Leipzig and Lemgo in Germany have begun a new project aimed at improving root canal therapy. Sponsored by the German Federal Ministry of Education and Research’s (BMBF’s) funding programme Twenty20—Partnership for Innovation, and the smart3 consortium, members of the medical faculty at the University of Rostock and the Fraunhofer Institute for Ceramic Technologies and Systems are working together on the project.

“We are pleased to have strong partners at our side in this project and are working very closely and in an interdisciplinary way with them. We are counting on great benefits for our patients,” emphasised Prof. Emil Reisinger, dean and scientific director of the medical faculty at the University of Rostock. The aim of the IPUCLEAN joint research project is the development of a piezoelectric ultrasonic cleaning system to support root canal therapy with rotating super-elastic files made of shape memory alloys.

“The joint project is intended to improve the treatment process and patient safety during root canal therapy in the medium term—at the same time ensuring and increasing the quality of the treatment results achieved,” said Prof. Rainer Bader, head of the FORBIOMIT research laboratory for biomechanics and implant technology at Rostock University Medical Center.

The project is being funded by a BMBF grant of more than €1 million. The research is being supported by Komet Dental, Werner Industrielle Elektronik and Zahntechnik Leipzig.
Strategies for the treatment of extremely curved root canals

By Dr Bernard Bengs, Germany

One of the major challenges in endodontics is the enormous complexity of root canals. Among other things, a large number of difficulties must be overcome in terms of the number, position, possible branches and curvatures of the canals. Case studies are used to demonstrate how predictable treatment results can be achieved in adverse anatomies too.

The aim of root canal preparation is the complete removal of all vital and necrotic tissue, infected canal wall dentine, foreign matter and root filling material. Adequate chemical disinfection should be made possible and shaping should allow wall-to-wall obturation of the canal system. As early as 1974, Herbert Schilder published guidelines on this topic, which have virtually remained unchanged, including the creation of a continuously conical canal shape from the access cavity to the apex, respecting the course of the root canal and maintaining the position of the apical foramen at a size as small as practicable.

In the presence of very pronounced curvatures, especially abrupt or even S-shaped canals, double obturations, it can prove extremely difficult to implement these guidelines. The angle of curvature is not the only factor here; the length of the distance after the curvature is also decisive for the predictable treatment results. As the degree of difficulty increases, the risk of step formation, splitting and instrument fracture quite naturally increases.

Treatment planning

Initial information is provided by the preoperative radiographic image. In complex anatomies, such as those that often occur in the posterior region, a CBCT scan provides valuable information on 3D curvatures and the confluence of canals. This information is extremely important for treatment planning, so as to allow the clinician to determine a strategy regarding the instruments to be used and canal preparation in advance. For example, very narrow, strongly curved roots should, if applicable, be prepared with a smaller ISO size or a smaller taper, even when very flexible nickel-titanium (NiTi) files systems have previously been used. The ability to remove infected tissue safely therefore offers both increasing dimensions, which entails unwanted transportation or even strip perforations as risks. Each case should be considered individually to allow sufficient removal of infected tissue without risking unwanted excessive removal of dentine.

In vital cases, the size of the preparation may be more moderate than in cases of pulp necroses or revisions, as less removal of dentine will be required here. Ultimately, of course, the treatment size should be determined by apical guarding (apical measurement). As this is only practicable to a limited extent in the case of very extreme, even opposing curvatures, even more attention should be paid to tactile feedback during instrumental canal preparation. Sufficient preparation is always required for root canal irrigation and subsequent obturation so that a shape of at least size 30.04, or better of size 30.06 or 35.06 (larger in the case of strong curvatures), which is usually required in extreme cases, must be prepared manually using the step-back technique. Otherwise, it will not be possible to achieve sufficient disinfection and filling of the root canal.

Notes on preparation

The preparation of an optimal primary and secondary access cavity is extremely important, particularly in the case of strong curvatures. Therefore, a most straightline access to the root canal system is an indispensable pre-condition that this instrument could only withstand the requirements of the canal shaping.

First, the course of the canal should be probed with an ISO size 6, 8 or 10 scouting file; if necessary, after coronal pre-flaring with an orifice shaper or Gates-Glidden drill. Irrespective of the file system used, the preparation of a glide path is essential for safe canal preparation. Particularly in the case of strongly curved, narrow canals, the use of rotary NiTi glide path files is not only less prone to complications than with manual instruments, but also more comfortable. The gliding space created allows a significantly lower-risk use of the following rotary NiTi files for canal preparation.

The point of confluence of canals represents a special case of curvature, as this often occurs particularly abruptly. It, therefore, makes sense, for example in the case of two canals in the mesial root of a mandibular first molar, to initially prepare only one canal fully to its working length. This will often be the mesiolingual canal. To determine the curvature, a gutta-percha point is then positioned in the prepared canal and a K-file is inserted into the other canal. The marking of the instrument tip in the gutta-percha point determines the length up to which the second canal must now be prepared. This avoids risky streaming of the instruments, as well as the necessary removal of dentine. Furthermore, the chemical preparation of the canal system is an indispensable part of the preparation, since only part of the canal wall surface is addressed during mechanical prepa-
rarization.

Root canal therapy was continued approximately six weeks later; after anaesthesia and placement of a rub-

ber dam, tooth #25 was trepanned under the microscope (Fig. 3). The glide path was first prepared manually with C+ Files of ISO sizes 6 and 8 (Dentsply Maillefer), then mechanically with PathFiles of size 15.06 and 19 (Dentsply Maillefer). The more flexible Hyflex G15 glidepath files (COLTENE) were not yet available at the time of treatment. A detailed image of the brand-new PathFile illustrated how extremely the 5-shaped canal configuration had stressed the rotary NiTi instruments after a single use (Fig. 3). It depicted the plastic deformation of the instrument, a clear indication that this instrument could only withstand the requirements with good fortune. A fractured instrument would certainly have been within the realms of possibility.

After radiographic confirmation of the working length, the canals were prepared with the Hyflex CM (controlled memory) NiTi files (COLTENE), Figs. 4 & 5. The following sequence was used: 15.04, 20.04, 25.04, 25.06, 30.04 and 30.06. Intermittent irrigation was again per-formed with heated 6% NaOCl.

Case 1: Pulp necrosis in an S-shaped canal

In November 2015, a 46-year-old emergency patient with acute symptoms of tooth #23 presented. The tooth had been restored with a ceramic inlay, the sensitivity test for cold was negative, and the tooth was sensitive to percussion and pressure. The preoperative radiograph revealed periapical periodontitis (Fig. 1). The diagnosis was pulp necrosis after a previous perforation close to the pulp. The inlay was removed and an adhesive pre-endodontic build-up was fabricated from composite. During preparation, pus drained from the canal entrances. Working length was then determined, followed by initial preparation with Kerr files up to only ISO size 8, for time reasons, together with intermittent irrigation with heated 6% sodium hypochlorite (NaOCl). Subsequently, a drug deposit was inserted by rotating in Ledermix. Owing to the small preparation size, the use of calcium hydroxide would only have been possible to a limited extent.

Root canal therapy was continued approximately six weeks later; after anaesthesia and placement of a rub-

ber dam, tooth #25 was trepanned under the microscope (Fig. 4). The glide path was first prepared manually with C+ Files of ISO sizes 6 and 8 (Dentsply Maillefer), then mechanically with PathFiles of size 15.06 and 19 (Dentsply Maillefer). The more flexible Hyflex G15 glidepath files (COLTENE) were not yet available at the time of treatment. A detailed image of the brand-new PathFile illustrated how extremely the 5-shaped canal configuration had stressed the rotary NiTi instruments after a single use (Fig. 3). It depicted the plastic deformation of the instrument, a clear indication that this instrument could only withstand the requirements with good fortune. A fractured instrument would certainly have been within the realms of possibility.

After radiographic confirmation of the working length, the canals were prepared with the Hyflex CM (controlled memory) NiTi files (COLTENE), Figs. 4 & 5. The following sequence was used: 15.04, 20.04, 25.04, 25.06, 30.04 and 30.06. Intermittent irrigation was again per-formed with heated 6% NaOCl.
Figs. 22 & 23: HyFlex Glidepath files and HyFlex EDM 10.05 Glidepath file.

Figs. 19–21: Pin check and post-op check after one year and 4.5 years, respectively.

Fig. 12: Preoperative radiograph of tooth #37

Figs. 15 & 16: Radiographic measurement and master point image

Fig. 13: The opened pulp

Fig. 14: Removal of the coronal pulp

A 46-year-old patient presented with pulpitis aperta of tooth #37. After local anaesthesia, the drug was removed and the course of the canal was manually expanded intermittingly with prebent ProTaper hand instruments F1 to F5 and then perfectly shaped with the corresponding rotary HyFlex files, as the instruments were stopped in the mesial root by the speed limiter of the endodontic motor owing to the extreme curvature. The entire preparation was performed under intensive irrigation with heated 6% NaOCl. In addition, a ultrasound-activated final irrigation with 17% EDTA and NaOCl was performed three times for 20 seconds. After the master point try-in, the root canal was obturated vertically with warm gutta-percha using the modified Schaffer technique (Figs. 16–18). Tooth #37 was sealed adhesively with a glass-fibre pin and composite (Fig. 19). Postoperative radiographic control after one year and approximately 4.5 years showed continued uneventful apical conditions (Figs. 20 & 21).

Discussion

These cases demonstrate that the safe preparation of even extreme curvatures is predictable owing to the use of highly flexible instruments such as the HyFlex CM.

Meanwhile, additional instruments have become available in sizes 13.01, 15.02 and 20.02, as have HyFlex EDM size 10.05, which are superior to the files used at the time in terms of material properties and thus offer greater safety in difficult cases (Figs. 22 & 23). Furthermore, it can be seen that hybridisation with manual instruments can be helpful or even necessary to minimise the risk of fracture and to control abrupt curvatures. The file sequences used are of course material-intensive, especially since the files were discarded after use in each patient case. This procedure is costly, but offers the best possible safety to avoid cross-contamination and instrument fracture.

Conclusion

The postoperative radiographic checks after several years proved that even very complex anatomies can nowadays be treated safely, predictably and sustainably with suitable instruments. For the patient, this implies the long-term preservation of the natural dentition, even in challenging cases.

Editorial note: A full list of references is available from the author.

About the Author

Dr Bernard Bengs is a specialist in endodontics certified by the German Society of Endodontology and Traumatology.

Vaatstraße 1, 10785 Berlin, Germany.

He can be contacted on dr.bengs@gmx.de

Fig. 17 & 18: Root canal filling and check of tooth #37

Fig. 18: Removal of the coronal pulp
WaveOne® Gold
Now with WaveOne® Gold Glider

Surf the canal with confidence

WaveOne® Gold offers you the simplicity of a one-file shaping system combined with higher flexibility* to respect the canal anatomy. Now available with a corresponding glide path file to optimize your shaping preparation. Experience the feeling of confidence throughout your treatment.

*compared to WaveOne